On 9th December 2007, at a private site near Cliffe, north Kent, I came across an unusual drake *Aythya*. Although asleep and partially hidden, it caught my attention because the upperparts looked a shade darker than those of the accompanying male Common Pochards *A. ferina* (hereafter ‘Pochard’). During the next two weeks, better views of the same individual enabled a written description and photographs (e.g. plate 17) to be obtained. Although it superficially resembled a drake Redhead *A. americana*, two key features suggested that it was in fact a hybrid: its small size (it appeared slightly smaller than drake Pochard) and the degree of contrast between the mantle/scapulars and flanks.

Description

Bare parts Bill blue, apart from a black border to the nostrils, a clear-cut black band across the tip (this showed little protrusion along the cutting edge but a slight extension at the nail was apparent) and a pale band behind the black tip. According to light conditions, the iris varied from yellow/orange to orange/yellow.

Head Similar in shape and colour to that of Redhead, with a longer neck than Pochard. No permanent hint of a tuft.

Body Slightly smaller than drake Pochard; also more compact, with a more vertical front end. In full sunlight, the flanks and upperparts looked similar to but slightly darker than those of Pochard. In dull light, the mantle/scapulars looked darker than the flanks and, with good views, showed very fine vermiculations. Apart from the breast and stern, the tertials were the darkest area of the bird – at all times they appeared darker than those of Pochard and this was often the best feature with which to locate the bird when asleep. The breast was black with no hint of rufous. The flank panel was a different shape from that of Pochard and slightly darker and showed some contrast with the white belly.

Wings The wing-coverts were similar to the mantle/scapulars, i.e. darker than on Pochard. The wingbar was grey on the secondaries merging into brown-grey on the primaries and appeared more contrasty than on Pochard, owing to the darker coverts. As a whole the wing was strikingly similar to that of Redhead.

Tail The rear was black with no pale areas apparent on the undertail; the tail feathers appeared similar to those of Pochard.

This bird raised issues that may be relevant to the identification of Redhead-like hybrids, especially at a time when BBRC has pledged to review all British records of Redhead (*Brit. Birds* 100: 759). Firstly, with regard to size, measurements of total length from American sources (e.g. Sibley 2000, www.birds.cornell.edu) suggest that Redhead may be slightly smaller than stated in literature more commonly available to British observers (e.g. Madge & Burn 1988, Ogilvie & Young 1998). Although measurements of total length are not an ideal way of comparing size, as Redhead is proportionately longer-necked than Pochard, the prevailing view that a drake Redhead should always be larger than Pochard may not necessarily be correct. Sibley’s (2000) comparative illustrations portray Redhead
as similar in size to Greater Scaup A. marila; given that the Nearctic race of the latter A. m. mariloides is slightly smaller than the nominate Palearctic race (Madge & Burn 1988), this also suggests that differences in size between at least some Redheads and Pochard may be less significant than generally assumed. Secondly, it was surprising how the degree of contrast between the upperparts and the flanks of the Cliffe bird varied with the angle of view and lighting conditions; in particular, it was virtually impossible to separate from Pochard (and probably Redhead) on this feature alone when asleep. Internet footage suggests that this variation in tone and contrast may also be the case with Redhead (e.g. see http://ibc.hbw.com/ibc/phtml/votacio.phtml?idVideo=17596&Aythya_americana). Finally, several field guides (e.g. Harris et al. 1989, Svensson et al. 1999) suggest that many drake Redhead-like hybrids can be identified by more extensive areas of black on the bill (as well as head shape and mantle contrast). I have examined many photos taken in the USA, and the bill pattern of the Cliffe bird appeared to be within the range of variation exhibited by Redhead.

References

Difference in shape of bill-base feathering between Common and Black Scoters in non-adult-male plumage

During a visit to the American Museum of Natural History (AMNH), in New York, I examined the specimens of female and juvenile or first-winter male Common Melanitta nigra and Black Scoters M. americana. Although my sample was limited to 26 Common and 19 Black Scoters, I gained the impression of a slight but consistent difference in the shape of the bill-base feathering between the taxa in these plumages. I am not aware that this feature is described in existing literature (see Collinson et al. 2006 for a comprehensive review of the genus Melanitta).

When the head is viewed in profile, the feathering across most of the base of the upper mandible appears to be straight or slightly convex (bulging) on Common Scoter, whereas it is concave on Black Scoter (see fig. 1). The shape echoes that of adult males but is usually less pronounced. In both taxa, the feathering gives way to a ‘smiling’ gape just above the cutting edge of the upper mandible. On Black Scoter, the concave shape above this often results in a rather pointed angle to the feathering – this appears to be unusual on Common Scoter.

Since visiting the AMNH, I have checked this feature on the skins at the Zoological Museum of the University of Copenhagen (ZMUK), on live birds in the USA and...
Sweden, and on photos published on the internet. It still seems useful, even though a few individuals with an almost straight edge to the feathering are perhaps best left unidentified. Some Common Scoters show slightly concave feathering immediately below the culmen, which creates an impression approaching that of Black Scoter, especially when viewed head-on. However, the feathering below this is typically bulging, resulting in a sigmoid profile to the bill base as a whole. No consistent age-related differences (i.e. between juveniles and adult females) in shape of bill-base feathering were apparent on the material examined.

Inevitably, it requires extremely good views (or photographs) to evaluate the shape of the feathering properly. The area around the bill base frequently lies in shadow, which makes detail hard to establish. At this stage, the low number of individuals examined prevents any firm conclusions on the scope for identifying extralimital birds based on this feature alone, but further studies may reveal the extent of variation within, and pos-

Fig. 1. Variation in shape of bill-base feathering in Common Melanitta nigra and Black Scoter M. americana.

19. Female/first-winter Common Scoter Melanitta nigra, The Netherlands, November. The bill-base feathering of this individual is essentially straight, which was the case in approximately half of the Common Scoters examined in this study. Note the gently rounded feathering just above the gape. Such a shape has not yet been found in Black Scoter M. americana.

20. Female Black Scoter Melanitta americana, Kentucky, USA, January. This bird shows the typical concave bill-base feathering seen on most Black Scoters (the shape is slightly exaggerated due to the angle of the bird’s head). Also note a slightly swollen basal half of the upper mandible.
sible overlap between, the two species. Nonetheless, this feature may prove a useful addition to those listed by Garner (2008) in the quest to identify females/immatures of the two species.

In addition to the shape of the feathering, the shape of the culmen may help to identify certain individuals. Some female Common Scoters have a poorly defined knob at the base of the upper mandible, creating a shape that approaches that of males. In a few (older?) birds, this knob can be as conspicuous as on males. Conversely, some female Black Scoters have a slightly swollen basal half of the upper mandible, faintly resembling that of males (see also Waring 1993). It seems unlikely that these extreme bill shapes overlap between the species. The value of this character is limited, however, as the culmen is essentially straight along its entire length on most birds.

References

Notes

Identification of Citrine and Yellow Wagtails – a possible identification pitfall

On 10th September 2005, on Inner Farne, Northumberland, RA heard what he thought was a Yellow Wagtail Motacilla flava calling. He located the bird as it called a second time, flying towards him then circling quite low overhead. He could see the underwing pattern well and identified the bird as a first-winter Citrine Wagtail M. citreola based on the grey-and-white plumage, the white bar across the underwing and the slightly hoarser call compared with that of Yellow Wagtail. The bird flew off without landing, however, and was not relocated. Later that day, a first-winter Citrine Wagtail was found at Alnmouth, Northumberland, about 25 km to the south along the coast, which might possibly have been the bird seen over Inner Farne earlier in the day.

A description of the Inner Farne bird was submitted to the Northumberland and Tyneside Bird Club and was assessed by their records committee in March 2006, prior to being sent to BBRC. Since no details of the head or upperwing pattern were supplied, however, the local committee felt that a Yellow Wagtail with a Citrine-like call could not be fully excluded and the record was not accepted.

When informed of this decision, RA drew the committee’s attention to a feature that he had seen on the bird which he believed established the identification as Citrine: a fairly broad white wing-bar running more or less across the middle of the underwing which, according to Alström & Mild (2003), is diagnostic of Citrine. Alström & Mild stated (on p. 315) that: ‘In all plumages, it is separated from White [M. alba] (except subspecies leucopsis and some lugens) and Yellow by showing a rather broad white bar along the centre of the
underwing, created by white bases of the secondaries and inner primaries (less clear-cut and slightly narrower than in Grey Wagtail [M. cinerea]).

This potentially diagnostic feature was new to all members of the local records committee, who then examined photographs and additional literature to establish whether Yellow Wagtail, in particular those from the eastern part of the species' range, could be fully excluded using this feature alone. Two plates in Sibley (2000), depicting Yellow Wagtail of the northeast Siberian and Alaskan breeding form M. f. tschutschensis, illustrate a white bar extending across the underwing, inferring that Yellow Wagtail can also show this feature. Then, on 20th April 2006, a Yellow Wagtail in an unfamiliar plumage was present at the Beehive Flash, Earsdon, Northumberland, and was photographed by several observers. One photograph showing the bird as it was about to take flight clearly shows the underwing, which features a white stripe extending across some of the underwing-coverts and pale bases to the secondaries, giving the impression of a broad underwing bar. Further evidence that Yellow Wagtail can show a white wing-bar on the underwing was provided when IF caught two juvenile Yellow Wagtails at East Chevington, Northumberland, on 16th August 2006. Photographs of the underwings of both birds clearly show a paler (whitish) base to the primaries and secondaries which, combined with the broad white tips to the underwing-coverts, gives the impression of a large white wing-bar on the underwing.

Ian Fisher
74 Benton Park Road, Newcastle upon Tyne NE7 7NB
Ross Ahmed
33 Kingsway, South Shields, Tyne and Wear NE33 3NN

The Inner Farne record was reviewed, but both the local committee and BBRC felt that it was still not acceptable as a Citrine Wagtail. Clearly, it would appear that Yellow Wagtails can show a whitish bar across the middle of the underwing, perhaps not dissimilar to that shown by Citrine Wagtail in some cases. Further observations by birders at home and abroad would help to clarify whether this feature is shown consistently by all Yellow Wagtails, or whether it occurs only in certain races or age categories.

Acknowledgments

We would like to thank Bob Proctor and Mike Hodgson for commenting on an earlier draft of this note and the Northumberland and Tyneside Bird Club Records Committee for valuable discussions. We also thank Colin Bradshaw and BBRC for allowing IF to read the BBRC file on this bird.

References

For more than a decade we have been aware of Ospreys *Pandion haliaetus* visiting an irrigation reservoir in southwest Tenerife, Canary Islands. The birds, which probably originate from a nearby area where the species breeds (Teno Massif), were presumably first attracted by fish in the reservoir. Now, with fish stocks depleted at this site, birds visit the reservoir mainly to bathe, drink and preen. During August and September 2007, at least three adults visited regularly, and apart from bathing, drinking and preening, they were also observed ingesting, and with a certain assiduity, the slime and algae *Rhizoclonium* sp. (Cladophoraceae) present near the banks of the reservoir. This aspect of their behaviour, displayed especially by one individual, occurred in three different ways: (1) the bird, in flight, would take slime and algae from the banks with its claws, carrying the material to a nearby perch to ingest; (2) immediately after bathing near the bank of the reservoir, the bird would take the algae from a few centimetres below the surface and carry it (plate 23) to the same perch to ingest; and (3), on only one occasion, the bird stood on the edge of the bank ingesting slime and algae directly (as in plate 24, taken more recently, in October 2008).

Although we are unaware of the reasons for this consumption (for example, we checked for the presence of invertebrates in the algae, but found none), these observations explain the curious behaviour of Ospreys watched at the same reservoir in 2006. Bibliographic searches and enquiries to several raptor workers have failed to locate any reference to similar behaviour in Ospreys or other birds of prey. The challenge that arises now is to ascertain whether this deliberate ingestion of slime and algae is related to any special neutralising or laxative properties that these substances may possibly contain.

Acknowledgments

We would like to thank Richard O. Bierregaard, Greg Clancy, Luis Palma, Pertti Saurola, Rafel Triay and Rolf Wahl for their prompt replies to our request for information. Helen Parr assisted with the translation, and María C. Gil and Rubén Barone with the identification of the algae.

Felipe Siverio, Manuel Siverio and José J. Hernández
Los Barros 21, E-38410 Los Realejos, Tenerife, Canary Islands; e-mail felipe.siverio@telefonica.net

23. Osprey *Pandion haliaetus* carrying algae *Rhizoclonium* sp. in its claws, southwest Tenerife, Canary Islands, September 2007.

Notes

Whiskered Terns feeding on the ground

In November 2007, I paid several visits to an estuarine channel in the Odiel Marshes, just north of the coastal town of Punta Umbria (Andalusia, Spain) and immediately adjacent to the large salt pans which form part of the Marismas del Odiel Reserve. The muddy banks of the channel were almost completely submerged at high tide.

On 7th November, several metres of mud were exposed below the wall of the salt pans, and I noticed two Whiskered Terns *Chlidonias hybrida* at the water’s edge, among feeding waders. It soon became obvious that they were behav- ing in a similar way to the waders, albeit less actively. They were walking short distances to pick food items from the surface of the mud or, less frequently, the water. Both terns fed in this manner for about ten minutes, remaining close together. One of them then flew off to the salt pans and was seen ‘patrolling’ back and forth in more typical fashion, but the second bird remained feeding on the mud for at least another half an hour. From my vantage point on the other side of the channel, it was impossible to see what prey items were being taken, but they were almost certainly ‘*Calidris*-fodder’ (*Dunlin C. alpina* was one of the wader species close by) rather than the sub-surface invertebrates being sought by Common Redshanks *Tringa totanus* and Bar-tailed Godwits *Limosa lapponica*.

What were presumably the same two individual terns were seen feeding in identical fashion in the same place on both 15th and 16th November, although on these dates the observation times were much shorter.

Weather conditions did not seem to be responsible for this behaviour as it was calm, warm (25°C) and bright on 7th and 15th, but cooler and windier with some cloud cover on 16th. Judging from the numbers of Sandwich Terns *Sterna sandvicensis* and Little Egrets *Egretta garzetta* fishing over and beside the channel respectively, there was no shortage of ‘small fry’ available, and there were still some flying insects over the salt pans and weedy banks.

BWP describes four different feeding methods but all involve prey items being taken from the air. This accords with my own previous experience of the species in winter. In February 1998, I watched Whiskered Terns feeding over a tidal lagoon in Sri Lanka almost daily for three weeks and never saw birds taking food while on the ground.

Alan Vittery
164 West Clyne, Brora, Sutherland KW9 6NH

Lesser Crested Tern feeding at night

Phil Palmer’s recent note on a White-winged Black Tern *Chlidonias leucopterus* feeding at night in Namibia (*Brit. Birds* 100: 755) recalled the following incident. After dark on 1st February 2002, at Khor Kalba in the United Arab Emirates, we saw a Lesser Crested Tern *Sterna bengalensis* fishing by plunge diving into that part of the nearby tidal creek which was artificially illuminated by lights from the shore. The tern was seen to fish on several occasions between (roughly) 19.00–20.00 hrs as it patrolled parallel to the shore; although we did not certainly see it catch any food, it is possible that any such items were small and that we failed to detect them.

Pete and Susan Combridge
16 Green Close, Whiteparish, Salisbury SP5 2SB